AI正在改变所有学科?图灵奖得主姚期智:大科学时代来了
发布时间: 2024-05-22
斯坦福大学《AI指数报告》(AI Index Report)一向是国际AI界关注的“年度成绩单”。今年新发布的报告里,唯一一项来自中国的成果,出现在AI for Science领域:
阿里达摩院联合多家医疗机构,利用深度学习技术,在2万病例中识别出31例漏诊的胰腺癌,这项研究可能极大提高胰腺癌的早期诊断率。
业内评价该成果“令人惊叹”,因其集齐了科学突破的几大原则:年轻的专家、新颖的思路、交叉的技术。
这三条原则,或许也阐释了AI for Science最好的突破方向。
当2020年谷歌旗下DeepMind公司研发的人工智能系统AlphaFold问世的时候,很多人惊呼,科学家的饭碗要被AI砸掉了。因为AlphaFold预测蛋白质结构的精确程度,甚至让科学家怀疑是自己的实验出现了问题,Nature新闻声称“它会改变一切。”
时至今天,AI不但不会砸掉科学家的饭碗,反而带来了一个新的时代。
AI几乎可以与所有学科进行交叉融合。青年科学家们跨越传统的学科界限,迈向一个以问题为中心的大科学时代,这个愿景在AI的支持下有了成为现实的可能。
图灵奖得主、中科院院士姚期智刚刚上任清华大学新成立的人工智能学院院长,他在2024年达摩院青橙奖启动时说道:“当今AI正在给所有的科学带来不可阻挡的变革,AI科学正在引领学科交叉创新改变世界的面貌。过去数百年来,科学家们在各自的领域以内发展,而今,我们将进入一个更广阔的大科学时代。”
作为发掘中国科研新星的重要“风向标”奖,青橙奖和往年一样,面向在中国全职工作的35周岁以下科研人员,本届将评选出15位青橙奖获奖人,每人将获得由阿里巴巴公益专项支持、可自由支配的100万元奖金。
但在今年,学科间交叉创新的研究成为了焦点。本次青橙奖明确提出关注那些利用AI技术在交叉学科领域取得突破的科研新星,鼓励和支持跨学科的创新研究。
面向国家科技发展的中坚群体——青年科学家,它传递了一个积极的信号:AI for Science将会彻底打破学科边界,交叉研究会获得实打实的认可和支持。
跨学科一直是伟大的创新发生的地方
在阿西莫夫的科幻小说《基地》系列中,曾经描述了新文明在遥远的、远离核心的基地边缘诞生。其原因之一:在基地边缘地区,存在着各种各样的外来文明和势力,这使得那里的人不得不不断学习和适应,以应对新的挑战。这种开放包容的态度也促进了新文明的进步。
边缘孕育新文明,这几乎是跨学科作用的一个譬喻。跨学科,是一群科学家们出于自己的研究兴趣和需要,行至了学科的边缘,不断学习、适应、沟通的产物。
进化论的出现来自当年的动物学、植物学、生理学、地质学与古生物学的交叉,而孟德尔的遗传学则来自生物学与统计学的交叉。
化学推动了病原微生物学与药学的发展,阿司匹林的发明便是明证;而以X射线为代表的物理学的进展,来到了医学领域,这才有了临床影像诊断技术的发展。
而DNA双螺旋结构,这一上个世纪生物学界最伟大的发现,正是依托于当时最前沿的物理学、化学和生物学的先进技术和深邃思想,才得以璀璨问世。
在这一历史性的发现之前,生物学家们已经知道了遗传物质藏身于细胞的染色体中,而染色体则主要由蛋白质和核酸组成;在生物化学领域,科学家们对核酸的结构和功能已经有了初步的认识。而物理学方面,罗莎琳·富兰克林运用X射线晶体学技术对DNA进行了精确的晶体结构分析,拍摄到了著名的“照片51”,为理解DNA的三维结构提供了关键线索。而DNA双螺旋的两位核心发现者——詹姆斯·沃森和弗朗西斯·克里克,一个是生物学家,另一个则是转行生物学的退役物理学家。
来自交叉领域的辉煌成就也可以用数据来证明。
在一项2022年的研究中,澳大利亚国家科学局利用文献计量方法,基于经合组织(OECD)通过专家咨询给出的214个与AI相关的关键词,对1960年至2022年间的学术出版物进行了全面的筛选。这项研究发现,2016年后,AI相关论文的份额增长迅猛。影响力已经扩展到了自然科学、医学、社会科学、艺术和人文学科等几乎所有领域,和其他学科迅速融合。
日本文部科学省(MEXT)进行了一项研究,基于2007年至2016年间发表的高被引论文数据库Research fronts(RFs)中的2560篇论文,评估学科交叉对研究影响力的潜在作用。研究发现,一篇论文所涉及的学科数量每增加一项,其研究影响力平均提升约20%。
而这一点,早在2018年的《自然物理学》杂志中已有端倪。在那份研究中,研究者对108篇诺贝尔奖获奖论文的被引情况进行了分析,发现诺贝尔奖获奖论文都集中在物理-化学和化学-生命科学的边界上。
进入AI时代之后,由于它几乎可以与所有学科进行交叉融合,科学家们开始跨越传统的学科界限。
比如在天文学界,现代望远镜收集的数据量已达到前所未有的水平,即使是构建星表这一最基本的任务,传统工具完成得也非常吃力。而利用智能算法,就能够高效处理数据。
据《中国科学报》,之江实验室研究员、2023年达摩院青橙奖得主冯毅曾在快速射电暴起源研究中,面对“中国天眼”FAST提供的海量数据,利用之江智能计算天文平台的算法处理数据,破解了数据筛选和分析难题。“智能计算为基础研究带来了新工具和新范式。科研人员未必预料得到的创新突破,也许就会在智能计算与天文研究的融合创新中涌现出来。”冯毅说。
但AI赋能各个学科的交叉研究,只是AI影响科学的第一步。AI for Science更宏伟的蓝图,是彻底打破学科界限。
中国科学院院士鄂维南在一次公开演讲中提到,像通用大模型一样,在AI的帮助下,科学研究也可以有通用的大平台。平台能够帮助科学家解决物理模型设计、分子动力学模拟等基本问题,在这些平台上科学家只需要做感兴趣的应用和开发。由此,无论是学科的界限,还是理论、计算和实验之间的界限都会被打破,形成彻底的交叉科学文化。
因此,2024年达摩院青橙奖除延续往届信息科学与工程、新兴交叉、数学、物理、化学、材料、生命科学、医学、天文、地理之外,新设农学和大气科学,更是进一步鼓励青年科学家基于数据科学,与更多领域建立交叉创新。
有趣的是,青橙奖也成为了获奖科学家之间进一步“交叉”的契机。中国科学院大气物理所研究员成里京瞄准“过去中国并没有自己的海洋数据集”的空白,自主构建了一套国内外广泛使用的数据集,有力支撑了应对气候与海洋变化的国家需求, 他和中国农业大学教授曾也鲁因同年斩获达摩院青橙奖而结识,聊着聊着,就沟通起了两人的研究方向能否合力,如何将遥感数据深入用于气候变化背景下的全球海洋研究。在前往夏威夷参加国际会议的飞机上,成里京就写出了一页思路,令曾也鲁十分惊喜,他们很有信心能在这个方向上做出一些前沿的交叉研究成果。
对于AI for science, 我们还缺什么?
中国近年已经迅速行动了起来,2018年自然科学基金委响应科技战略,在基金申请上新增了人工智能与交叉学科两大领域。但还不够,现实中交叉学科研究仍旧处于一个尴尬的境地,对于交叉学科,当下的科研体系之下,很难完全兑现成资金和制度上的支持。
《泰晤士高等教育》的一项调查数据显示,大学在跨学科科学方面并没有说到做到,约有三分之一参与调查的大学没有对跨学科研究人员进行奖励,也没有衡量此类工作的成功与否。
不只是研究机构,科学资助机构同样对交叉学科的支持有限。一项利用澳大利亚全国性资助计划连续5年18476份提案数据的研究发现,研究提案交叉学科的程度越大,获得资助的可能性就越低。
这主要还是因为跨越学科太反传统了,尤其是反学术机构的传统。
对于研究机构来说,交叉学科研究本身就是高风险高回报的。一项基于32000篇论文数据的研究,评估了跨学科研究的收益和代价,研究发现,跨学科研究的生产率平均来说更低,但是引用较高,对于日益看重考核学术机构来说,对跨学科研究未必有耐心。
而跨学科研究的人才,需要的恰恰是时间和耐心。
《Communications Physics》杂志上发表的一项研究,分析了英国研究委员会资助的44419项研究,发现具有跨学科资助记录的研究人员会占据学术合作网络的主导地位,但这种竞争优势并不能转化为立竿见影的回报。跨学科研究人员在短期内发表的论文影响较小,这直接影响到他们吸收资助的能力。
然而,这些学者最终在论文数量和价值方面都优于同行。也就是说,跨学科人才的合作网络,将来会给它们带来更高的成就,他们只是需要时间来成长。
面对这一挑战,类似达摩院青橙奖的尝试,就非常有价值。在国外,传统科学资助模式的不足,常由私人基金会的资助来补充,私人基金提供长期稳定、不计回报、鼓励突破的资助,为高风险的创新提供安全网,和传统资助模式发挥互补作用。
作者: 知识分子